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Potential flow past a sphere touching a tangent plane

SIMON J. COX∗ and MARK J. COOKER
School of Mathematics, University of East Anglia, Norwich, NR4 7TJ, U.K.;∗Present address: Department of
Physics, Trinity College, Dublin 2, Ireland; E-mail: coxs@tcd.ie

Received 13 January 1999; accepted in revised form 24 January 2000

Abstract. The uniform ideal flow past an impermeable sphere in contact with an impermeable plane is calculated,
and the potential8 is expressed as an integral over solutions in tangent sphere coordinates, up to an unknown
functionα. An ordinary differential equation satisfied byα is solved numerically to a high degree of accuracy and
then a detailed presentation of the potential near the sphere is given. The potential near to the point of contact is
analysed separately using a theory appropriate to crevice regions, and the two solutions are matched. The potential
8 is interpreted as the pressure impulse,P , for which the uniform gradient is specified far from the sphere. This
provides information about the impulsive velocity and the net fluid impulse on the sphere or other blunt body near
a region of wave impact.Key words: breaking waves, impulsive motion, potential flow, wave impact pressures

1. Introduction

We calculate the velocity potential8 for uniform fluid flow past a sphere which is in contact
with a flat plane. This is the simplest geometry in which to consider the more general problem
of two bodies in point contact. Our interest arises from trying to model the fluid impulse on
a body which is resting on an impermeable surface in the vicinity of a sea-wave impact. It
may be that this wave-impact force will be great enough to overcome the natural forces which
normally anchor such a body in place, which could help to explain how boulders are moved
around on a beach during storms.

Shingle beaches are a prevalent feature of Britain’s coastline. During storms, shingle is
often washed onshore so that beaches are steeper in winter. In the summer the generally
smaller waves draw shingle away from the beach to offshore bars. Wave action on beaches
also tends to grade beach material, pushing larger particles farther up the beach (landward).
When the beach material is a mixture of pebbles of different sizes, large particles move over
the fine material and are thrown up on the shore [1]. We treat a blunt, randomly shaped boulder
as a sphere which is subjected to an impulsive flow when a sea wave breaks nearby. The fluid
impulse on the sphere is found from the pressure-impulse field, which is a potential, with
boundary conditions which are the same as for uniform flow past a sphere touching a tangent
plane. In this way, it can be demonstrated that large boulders will move farther up or down the
beach than small boulders (see [2]).

When a wave of heighth overturns and breaks against a sea wall, the fluid, of density
ρ, undergoes a sudden change in its velocity field at every point. For laboratory waves, this
change occurs over a timescale of the order of one millisecond. It is associated with a large
brief acceleration, which is in turn associated with a large pressure gradient, directed away
from the wall. This coincides with high values of pressurep, which have been reported by
experimentalists since Bagnold [3]. Laboratory and field measurements [4, 5] show that the
maximum pressures can be more than 10ρgh, ten times greater than the (mainly hydrostatic)
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pressure exerted on the sea bed by non-breaking waves, whereg is the acceleration due to
gravity.

During the short time of impact the fluid acceleration and the pressure gradient balance in
such a way that we may treat the change in the velocity field as occurring impulsively. We
define the pressure impulse to be

P(x, y, z) =
∫ ta

tb

p(x, y, z, t) dt, (1)

where[tb, ta] is the time interval of impact andx, y, z are coordinates in the fluid. Cooker and
Peregrine [6] show that, provided the duration of impact,ta − tb, is short enough, we have
approximately

∇P = ρ (ub − ua) , (2)

whereub andua are the fluid velocities before and after impact, respectively. For a fluid which
is incompressible before and after impact,P satisfies Laplace’s equation

∇2P = 0, (3)

even if the flow is rotational. Any vorticity in the flow is unchanged by the impulsive pressure
because the curl of (2) implies that the change in vorticity is zero. Equation (3) must be solved
subject to the boundary conditions (i)∇P ·n = 0 on a fixed impermeable surface (with normal
vectorn) which is in contact with the fluid before and after impact; (ii)∇P ·n = ρub ·n where
fluid impacts on a solid surface with velocityub and remains in contact with the surface after
impact; (iii) P or ∇P specified in the far field; (iv)P = 0 on a free surface (since pressure,
p, is constant on a free surface, we can defineP up to an arbitrary constant, and without loss
of generality this constant is zero).

Our interest is in the pressure impulse (and the underlying pressure) because we wish to
calculate the impulse on a body which is either fixed or free to move and which lies in the
region of a wave impact. Cooker and Peregrine [7] predict, and Grilli, Losada and Martin [8]
have measured, the peak pressure field on the wall and bed of a wave tank in which wave
impacts occur. Larger pressure impulses are found on the wall at the places where a wave
impacts. The pressure impulse decreases towards zero with increasing distance from the site
of impact. In particular there is a pressure-impulse gradient along, and parallel to, the bed.
For a small enough body on the bed, this gradient can be modelled as a far-field boundary
condition

−∇P ∼ Gi or P ∼ P0−Gx (4)

asr →∞, wherei is a unit vector in thex direction, along the bed away from the impact,r is
radial distance from the centre of the body andP0 > 0 andG > 0 are constants which depend
upon the location of the body and the field of pressure impulse in the large-scale view. Cooker
and Peregrine [7] consider simple bodies such as hemi-ellipsoids face-down on the bed, but
we wish to extend the analysis to bodies in point contact. We solve Laplace’s equation subject
to (4) and∂P/∂n = 0 on the sphere and plane. If we suppose in (2) thatub = 0 andua = ∇8
is the necessarily irrotational flow after an impulsive start, then we may take

P = −ρ8.
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We are then led to consider the artificial problem of the ideal flow past a sphere on a tangent
plane, and can formulate the boundary-value problem forP in terms of the more familiar
language of the velocity potential8. We reduce the flow at infinity to rest and consider the
sphere to move with constant velocityG/ρi parallel to and touching the plane.8 is also the
velocity potential for uniform flow perpendicular to the line joining the centres of two, equally
sized, touching spheres.

This problem is harder than finding the potential around two touching spheres in axi-
symmetric flow solved by Collins [9]. Lamb [10, Articles 80, 98, 99] uses an image system
to construct a series solution for the potential for flows perpendicular to, or in line with, the
centres of the spheres. His series are expansions in powers of non-zero gap width between
the two spheres. These solutions converge too slowly to be accurate as the gap width tends to
zero, although they are valid for separated spheres [11]. Liet al. [12] use spherical harmonics
to show that the impermeability boundary condition is approximated with greatest error in
the neighbourhood of the point of contact. Laplace’s equation is solved by Solomentsovet al.
[13] to find the conductivity around two touching spheres. They apply matched asymptotic
expansions to the problem of a sphere separated by a small distanceh from the plane and they
show that, in the context of the hydrodynamic potential flow, ash → 0 there is a singularity
in the fluid velocity near the contact point. Latta and Hess [14] also tackle the small gap
problem in the context of critical velocity phenomena in superfluid helium. They find the
same singularity in the velocity at the contact point. Davis [15], whose work we most closely
follow, considers two spheres heaving in phase on the surface of a liquid half-space. When
the spheres touch, he is led to consider the present problem. The added mass coefficient for a
sphere on a tangent plane, for movement parallel to the plane, is reported by Davis [15] to be
0·621 and we confirm this value.

The flow in the crevice near the point of contact can be approximated by averaging the
potential over the small vertical distance between the plane and the lower surface of the
sphere. This is presented in Section 2. The full three-dimensional potential problem is solved
in Section 3. The solution is expressed as an integral over functions given by the solutions of
Laplace’s equation in tangent-sphere coordinates. The integral contains an unknown function
α(q)which satisfies an ordinary differential equation. A highly accurate numerical solution for
α(q) is found in Section 3.2 and compared with an asymptotic solution reported by Davis [15].
In Section 4.1 we discuss the numerical results for the potential around the sphere and compare
them with the solution in the crack near the point of contact. The potential is continuous, but
has a derivative singularity at the point of contact. The errors in the results are reported in
Section 4.2 and shown to be much smaller than those for existing solutions of this problem.
The benefit of calculating the pressure impulseP is that we can compute the added mass and
the net impulse on the sphere. We do this for a fixed sphere with the fluid at infinity impelled
according to (4) in Section 4.3. Then we modify the results to allow for the movement of a
free sphere due to the fluid impulse, with the same far-field conditions.

2. Potential in the crack near the contact point

In the thin crevice near the point of contact between the sphere and its tangent plane, the
velocity potential8 satisfies Laplace’s equation,∇28 = 0. The boundary conditions on both
the sphere,S1, and the plane,S2, are

∇8 · ni|Si = 0, i = 1,2, (5)
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whereni denotes a normal to the surfaceSi. If Si is defined by the equationz = fi(x, y) then
ni = (−∂fi/∂x,−∂fi/∂y,1) and (5) becomes

∂8

∂z

∣∣∣∣
Si

= ∂8

∂x

∣∣∣∣
Si

∂fi

∂x
+ ∂8

∂y

∣∣∣∣
Si

∂fi

∂y
, i = 1,2. (6)

As in the derivation of shallow-water-wave theory (see, for example, [16]), we integrate
Laplace’s equation across the height of the crack and assume that the derivatives of each
of thefi are small. Then (6) implies that∂8/∂z is small on each of the bounding surfaces
and therefore thex andy derivatives of8 vary little across the gap and can be treated as
independent ofz. Definingh(x, y) = f2− f1 > 0 we have the approximation

h8xx + h8yy + hx8x + hy8y = ∇ · (h∇8) = 0, (7)

where now∇ is the two-dimensional differential operator andx and y subscripts denote
derivatives.

For a sphere of radiusR, we employ plane polar coordinates(r, θ), wherer = 0 is the
point of contact, so that (7) is

8rr +
(
hr

h
+ 1

r

)
8r + 8θθ

r2
= 0, (8)

and putf1 ≡ 0 andh(r) = f2 = r2/2R. At the outer edge of the crack, asr →∞, we expect
the solution to match that for a constant flow parallel to thex axis, for which8 ∝ cosθ. A
separable solution to (8), which is finite and integrable over the domain, is

8c(r, θ) = Ar21/2−1 cosθ, (9)

which is the required approximate solution for the potential,8c, in the crack under the sphere
(in agreement with the analysis of Solomentsovet al. [13]). The constantA will be chosen
such that8c matches a solution exterior to the crack at some appropriate value ofr. Note that
the velocity,u = ∇8c, is singular at the point of contact.

3. Fully three-dimensional flow past a sphere on its tangent plane

We now pose the problem as a sphere moving along its tangent plane with the fluid at rest at
infinity. The instantaneous point of contact is at the origin and the tangent plane is the(x, y)-
plane. The sphere moves at unit speed in the direction of the positivex axis (G= |G| = |i| =
1) and thez axis pierces the sphere along a diameter.

3.1. FORMULATION OF THE POTENTIAL

We use tangent-sphere coordinates [17, p. 104]:

x = 2µ cosθ

µ2+ ν2
, y = 2µ sinθ

µ2+ ν2
, z = 2ν

µ2+ ν2

or

µ = 2(x2 + y2)1/2

x2 + y2 + z2
, ν = 2z

x2 + y2 + z2
, tanθ =

(y
x

)
.
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The origin corresponds toµ = ∞ andµ = 0 lies at infinity. Surfaces of constantµ are
toroids without centre opening, and surfaces of constantν are spheres tangent to the(x, y)-
plane at the origin. The(x, y)-plane is defined byν = 0 and we choose the surfaceν = 1 to
be our sphere, which has unit radius.

For any scalar functionE , Moon and Spencer [17] give

∇E = µ2+ ν2

2

(
∂E

∂µ
µ̂+ ∂E

∂ν
ν̂+ 1

µ

∂E

∂θ
θ̂

)
,

whereµ̂, ν̂, θ̂ are unit vectors normal to the level surfaces ofµ, ν, θ. They also give solutions
of Laplace’s equation of the form

8̄ = (µ2+ ν2) 1
2 M(µ)N(ν)2(θ), (10)

whereM(µ) = A1Jp(µq) + B1J−p(µq), N(ν) = A2 cosh(νq) + B2 sinh(νq), 2(θ) =
A3 cos(pθ) + B3 sin(pθ) andp is an integer. The boundary condition on the moving sphere
ν = 1 is

∂8

∂n

∣∣∣∣
ν=1

= −∇(x).n = −∇(x).ν̂ = −µ2+ 1

2

∂x

∂ν

∣∣∣∣
ν=1

= 2µ cosθ(
µ2+ 1

)
and since

∂n

∂ν
= 2

µ2+ ν2
,

we have

∂8

∂ν

∣∣∣∣
ν=1

= ∂8

∂n

∣∣∣∣
ν=1

∂n

∂ν
= 4µ cosθ(

µ2+ 1
)2 . (11)

The velocity component normal to the plane is zero, so

∂8

∂ν

∣∣∣∣
ν=0

= 0 . (12)

Finally, we require no singularity in8. The cosθ dependence in (11) givesp = 1 (that is,8
is everywhere proportional to cosθ as for the approximate solution) and this, with (12), gives
us that8 must be of the form

8̄ = C(q)(µ2+ ν2)
1
2J1(µq) cosh(νq) cosθ.

Sinceq is a free parameter, we integratē8 over all positiveq to obtain the following
expression for the potential8:

8(µ, ν, θ) = (µ2+ ν2)
1
2 cosθ

∫ ∞
0
C(q)J1(µq) cosh(νq) dq. (13)

To findC(q) the boundary condition (11) is applied to (13),

(µ2+ 1)
1
2 cosθ

∫ ∞
0
C(q)J1(µq)q sinh(q) dq

+ (µ2+ 1)−
1
2 cosθ

∫ ∞
0
C(q)J1(µq) cosh(νq) dq = 4µ cosθ(

µ2+ 1
)2 .
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Thus∫ ∞
0
C(q)J1(µq)q sinh(q)

(
µ2+ 1+ coth(q)

q

)
dq = 4µ(

µ2+ 1
)3/2 .

Let α(q) = C(q)q sinh(q) then∫ ∞
0

α(q)J1(µq)

(
µ2+ 1+ coth(q)

q

)
dq = 4µ(

µ2+ 1
)3/2 (14)

and (13) becomes

8(µ, ν, θ) = (µ2+ ν2)
1
2 cosθ

∫ ∞
0

α(q)J1(µq)
cosh(νq)

q sinh(q)
dq. (15)

3.2. SOLUTION FOR α(q)

Following Davis [15], the transform in (14) can be inverted by applying the operator

L = d

dq

[
q

d

dq

]
− 1

q

and using the result∫ ∞
0
J1(µq)q e−q dq = µ(µ2+ 1)−3/2.

Thenα(q) can be shown to satisfy

d2α

dq2
− 1

q

dα

dq
−
(

1+ coth(q)

q

)
α = −4qe−q . (16)

In order that the integral in (15) converges, the boundary conditions on (16) areα(0) = 0 and
asq → ∞,α(q) → 0. We solve (16) by writing it as a system of two first-order ordinary
differential equations and then using an Euler shooting method with constant step sizeh; see
Figure 1. The scheme requires thatα′(0) be specified, which depends critically upon the step
size. Whenh is decreased, the estimate forα′(0) must be decreased also. Any error inα′(0)
leads to solutions which diverge asq →∞; the value of α′(0) which givesα→ 0 asq →∞
is therefore unique. An initial guess forα′(0) is refined by trial and error, any inaccuracy
showing itself in the divergence to±∞ beyond some large value ofq. (h = 1·0 × 10−5

provided acceptable accuracy, for whichα′(0) = 0·05665416796618627178.)
Onceα(q) has been found,8 is calculated by numerical integration of (15). This was

carried out by means of a simple trapezoidal rule with intervals of widthh = 2× 10−6 and
the upper limit was truncated atq = 20·0. Davis found that for largeq, α(q) ≈ q2e−q and in
Figure 1 we see that this is a good approximation for allq. Whenµ andν are small (corre-
sponding to points in the fluid far from the sphere) the greatest contribution to the integral in
(15) comes from largeq. So replacing the numerically computedα(q) with ᾱ(q) = q2e−q led
to similar values of8 (compare Figures 6 and 8).
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Figure 1. α(q), the solution of (14), compared withq2e−q . An Euler scheme was used, with step size
h = 1× 10−5 andα′(0) = 0·05665416796618627178.

Figure 2. Comparison between the crack solution and three-dimensional theory in the planeθ = 0◦. 8 on the

tangent plane and on the sphere bracket the crack solution8c = 1·401r2
1/2−1 − r for r ≤ 0·4. For larger values

of r, 8c < 8 on both the sphere and the plane. However, forr < 0·05 we expect the crack solution to become
even more accurate.

4. Results

4.1. POTENTIAL AROUND THE SPHERE

For a sphere moving along thex axis at unit speed, the crack solution (9) becomes

8c(r, θ) =
(
Ar21/2−1− r

)
cosθ. (17)
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Figure 3. 8 as a function of angleφ on the sphere’s surface,ν = 1, and for an isolated sphere of unit radius
( 1

2 sinφ). φ = 180◦ is the contact point. The maximum of8 is 0·594aG and occurs atφ = 112·6◦. We see that
the influence of the tangent plane is negligible nearφ = 0◦.

We chooseA so that8c agrees best with8 from the three-dimensional analysis of Section 3.
At r = 0·05 (one-twentieth of the sphere’s radius) we constrain8c to equal8, as found from
the numerical evaluation of (15), on the sphereν = 1. This givesA = 1·401 (applying the
constraint at some 0·02 ≤ r ≤ 0·1, we find 1·401 ≤ A ≤ 1·402), which is comparable to
A = 1·41 estimated by Solomentsovet al. [13, Equation (47)] who use different criteria. This
choice for8c agrees well with8 on the tangent plane for a wide interval of values ofr as
shown in Figure 2. Notice that, whenr ≤ 0·4, the crack solution (17) lies between the curves
for 8 on the plane (ν = 0) and the sphere (ν = 1) obtained from the fully three-dimensional
solution. For slightly largerr the two-dimensional approximation becomes inadequate, this
being the region where three-dimensional effects are significant. However,8c is an excellent
approximation beyond the range ofr for which we would expect the theory to be valid. In
Appendix A we show that the potential8 has the same dependence onr as8c, close to the
contact point.

Elsewhere, the maximum value of8 occurs on the lower part of the sphere atφ = 112·6◦,
as shown in Figure 3, whereφ is the angle subtended at the sphere centre from the positivez

axis. This maximum coincides with the stagnation point, which can be verified graphically
from a plot of ∂8/∂µ againstφ. Therefore the presence of the tangent plane moves the
stagnation point 22·6◦ towards the plane.

Figures 4–9 show isopotentials on two-dimensional sections near the sphere. On a plane of
constantz, the transformationx →−x sends8→ −8 andy →−y sends8→ 8. Similar
symmetries apply for planes of constanty or x and therefore only a quarter of the domain is
drawn.

For a sphere moving from left to right at unit speed, Figure 4 gives contours of constant8

on the planez = ν = 0·0. The bunching of contours near the origin corresponds to large flow
speed around the point of contact. At the top of the sphere, on the planez = 2·0, Figure 5
shows the isopotentials. Figure 6 presents contours on a plane through the centre of the sphere,
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Figure 4. Isopotentials, from (15), on the tangent plane
z = ν = 0·0.8 = 0·0 on they axis, contour separation
= 0·05aG. The sphere moves from left to right at unit
speed.

Figure 5. Isopotentials, from (15), on the top plane
z = 2·0. 8 = 0·0 on they axis, contour separation
= 0·025aG. The sphere moves from left to right at unit
speed.

Figure 6. Isopotentials, from (15), on the equatorial
planez = 1·0. 8 = 0·0 on they axis, contour sepa-
ration= 0·05aG. The sphere moves from left to right
at unit speed. Compare with8 for an isolated sphere in
Figure 4.1, and also with Figure 8.

Figure 7. Isopotentials on the equatorial plane for an
isolated sphere of unit radius.8 = 0·0 on they axis,
contour separation= 0·05aG. The sphere moves from
left to right at unit speed.
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Figure 8.Isopotentials on the equatorial planez = 1·0,
using the approximationα(q) = q2e−q to evaluate
(15). 8 = 0·0 on they axis, contour separation=
0·05aG. The sphere moves from left to right at unit
speed. Compare with Figure 4.1.

Figure 9. Isopotentials on the vertical planey = 0·0.
8 = 0·0 on thez axis, contour separation= 0·025aG.
The sphere moves from left to right at unit speed.

z = 2·0 (which can be compared with the contours around an isolated sphere shown in
Figure 7). Figure 8 also shows contours onz = 1·0, but now the analytical approximation
α(q) = q2e−q has been used to evaluate8. The contours are nearly the same as in Figure 6;
this shows the value of the approximation toα(q). In Figure 9 the isopotentials for the vertical
planey = 0·0 are tightly bunched, indicating high fluid speeds.

If the sphere is held fixed, Figures 10 and 11 show how the presence of the sphere deforms
uniform flow parallel to thex axis at unit speed, on the planesz = 0·0 and z= 1·0, respec-
tively. The flow in Figure 11 is very similar to that for an isolated sphere, indicating that the
influence of the tangent plane is small one radius away.

4.2. ERRORS IN THE NUMERICAL APPROXIMATION

Figure 1 shows thatα(q) ≈ q2e−q , particularly for largeq, which accords with Davis [15].
Very little improvement in the accuracy ofα(q) is obtained by decreasing the step size; an
Euler method with step sizeh = 1×10−5 is adequate. One measure of the error in our method
is the difference between the calculated boundary condition on the sphere,∂8/∂ν|ν=1 (µ),

and the exact value of 4µ/
(
µ2+ 1

)2
on the planeθ = 0. However, Liet al. [12] quantify

their errors by examining the residual normal velocity component on the sphere,v′(φ). Here
v′ = 1

2(µ
2+ 1) ∂8/∂ν|ν=1 (µ) and therefore the error,E, is given by

E(µ) = µ2+ 1

2

[
∂8

∂ν

∣∣∣∣
ν=1

− 4µ(
µ2+ 1

)2
]

as graphed in Figure 12. This is an improvement compared with the numerical error re-
ported by Liet al. [12]. It is difficult to see how accurate their series representations of 1000
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Figure 10.Isopotentials on the tangent planez = 0·0 for
uniform flow from left to right past a stationary sphere.
8 = 0·0 on they axis, contour separation= 0·2aG.
The point of contact is at the origin.

Figure 11. Isopotentials for uniform flow from left to
right past a stationary sphere on the equatorial plane
z = 1·0. 8 = 0·0 on they axis, contour separation
= 0·1aG. The isopotentials are very similar to those for
an isolated sphere.

Figure 12. E(µ), the residual normal velocity component on the sphere, restricted to the planeθ = 0. The step
size ish = 1× 10−5 and the integration for8 is truncated atq = 20 (increasing this value ofq, and using the
analytical approximation̄α(q) over the extended range, would decrease the error further).φ = 180◦ is the contact
point. At φ = 175◦, E = 0·00015. We follow Liet al. [12] in showing only 140◦ ≤ φ ≤ 180◦.
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terms are, especially sinceφ = 180◦ corresponds toµ = ∞. However, it appears that our
error atφ = 175◦ is 0·00015 compared to 0·01 for their results. We can further reduce the
error in our method by using the analytical approximationᾱ(q) for q > 20. We remark that,
if we made no allowance for the presence of the sphere, the residual normal velocity would
beG sinφ, an error far in excess of that present here, exceptvery close to the contact point.
For φ > 175◦, which is equivalent tor < 0·043, near to the point of contact, we can use the
solution (9) with an error in8 of less than 0·0001, as found by the proximity of the lines in
an extension to Figure 2 forr < 0·05.

4.3. IMPULSE AND ADDED MASS

Cooker and Peregrine [7] suggest that the modulus of the impulse on a body depends upon its
shape and volume. They report the impulse for a hemi-ellipsoid whose flat base rests on a flat
bed, and a long circular log touching the bed. However, we wish to extend the calculations
to more general three-dimensional bodies, particularly those that have a contact point. The
simplest example of a body in point contact is a sphere on a horizontal plane.

We consider the pressure impulseP = −ρ8, where8 is computed from (15) for a moving
sphere. We calculate the impulse,Ix, on the stationary sphere due to an impulsive flow of unit
speed in thex direction at infinity. The pressure impulse for a stationary sphere is−ρ8 + x.
Using spherical polar coordinates(r = 1, θ,φ), with origin at the centre of the sphere, we
obtain

Ix =
∫ 2π

0

∫ π

0
(P (θ,φ)+ x)|ν=1 cosθ sinφ sinφ dφ dθ (18)

= π

∫ π

0
P |ν=1 (θ = 0,φ) sin2 φ dφ+ 4π

3
.

Since

cosφ = 1− µ2

1+ µ2
, sinφ = 2µ

1+ µ2
and sinφ dφ = 4µ(

1+ µ2
)2 dµ,

we have

Ix = 8π

∫ ∞
0

µ2(
1+ µ2

)3P(θ = 0,µ)|ν=1 dµ+ 4π

3

= 8π

∫ ∞
0

µ2(
1+ µ2

)5/2 ∫ ∞
0

coth(q)J1 (µq) α(q)

q
dq dµ+ 4π

3
.

We performed the integration numerically, truncating atµ = 50 (equivalent toφ = 177·7◦)
andq = 50, but using the approximationα(q) = q2e−q for q > 8. ThenIx = 0·828π +
4π/3 = 6·790. WritingIx = KV , whereV = 4

3π is the volume of the sphere, we haveK =
1·621. The added-mass coefficientK − 1 = 0·621 which confirms the result of Davis [15].
Thus, for a sphere of radiusa the added mass is 0·621

(
4
3πρa3

)
, which should be compared

with 1
2

(
4
3πρa3

)
for an isolated sphere.

If we denote bys = π − φ the arc length around the sphere from the contact point,
then the contribution to the impulseIx found above from the neighbourhood of the crack
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175◦ = 3·054rad= φ0 ≤ φ ≤ πrad= 180◦ is

I ′x =
∫ 2π

0

∫ π

φ0

1·401s21/2−1 cosθ. cosθ sinφ. sinφ dφ dθ

= 1·401π
∫ π−φ0

0
s21/2−1 sin2 s ds

= 1·401π.7·077× 10−5 = 3·115× 10−4,

showing that the contribution to the total impulse from the area around the crack is in the next
significant figure afterIx = 6·790. From arguments based on symmetry, the components of
the impulse in they andz directions are zero:Iy = Iz = 0. So a horizontal gradient of pressure
impulse,Gi, specified at infinity, gives a fixed sphere an impulse which is in thei direction.I =
|Ix|i = 1·621

(
4
3πa

3
)

G is only 8% larger than the impulse experienced by an isolated sphere,
1·5(4

3πa
3
)

G. This small difference suggests that we can well-approximate the impulse on
a blunt randomly shaped body by treating a sphere of the same volume. Since the impulse
vector is parallel toG and to the plane, this work may help to explain the sudden movement of
bodies away from a wave impact on a shingle beach. The pressure impulse gradient points up
the beach above the wave impact and points down the beach below. Each pebble responds to
the local applied pressure gradient; if it is free to move it acquires some initial speed from the
fluid impulse and is eventually brought to rest by friction with neighbouring bodies, gravity
and fluid resistance. In this way a body is displaced a short distance by each wave impact. A
succession of impacts in one place can lead to the movement by many small steps of beach
material both up and down the beach away from the site of impact.

We now suppose that the sphere has densityρb and is free to move. The fluid impulse
generated by the pressure impulse gradientGi accelerates it from rest to a velocityU i. We
dimensionaliseP from (18) and follow Cooker and Peregrine [7] in equating the change of
momentum of the sphere,4

3πρba
3U , with the impulse on it,

Ix = 0·828π(G− ρU)a3+ 4

3
πa3G = 4

3
πa3 (1·621G− 0·621ρU) .

Then the speed of the sphere is

U = 1·621G

0·621ρ+ ρb
(19)

and

Ix = 4

3
πa3G

1·621ρb
0·621ρ+ ρb

. (20)

For a sudden change of fluid speed of 10 m/s in water of densityρ = 1000 kg/m3 we expect
G = 104 kg/m2/s. If the body has densityρb = 3ρ, then (19) gives an acquired speed
(whatever its size) ofU ≈ 4·5 m/s. This is almost one half of the fluid’s speed, but we
would expect the body to be rapidly brought to rest by frictional forces.

5. Conclusions

The calculations outlined above provide a method for determining and visualising the flow
around a sphere on a tangent plane. The problem can be viewed as a stationary sphere at the
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origin, with∇8 a specified constant at infinity, or as a sphere moving in the direction of the
positivex axis in fluid at rest at infinity. The errors, as measured by how closely the boundary
condition on the sphere is satisfied, are significantly smaller than those of Liet al. [12].
8 is the potential for ideal flow around a sphere on a tangent plane. It is directly pro-

portional to the pressure impulse,P , a concept useful in coastal-wave impact. We envisage
that this information will be useful in calculating the effects of wave impact on bodies such as
roughly spherical boulders. In particular, the approximation in the crack (9) can be applied to a
wider class of body in point contact with a plane, such as ellipsoids with small eccentricities,
for which the potential retains the form8 ∝ r21/2−1 cosθ around the point of contact (see
[18]). As with the sphere, this solution is valid over a wide region near the point of contact.
However these bodies need full calculations to find the potential everywhere.

The sphere experiences no impulsive lift. The impulse is parallel to the applied pressure
gradientG which is parallel to the tangent plane. For a fixed sphere of radiusa the impulse is
I = 1·621

(
4
3πa

3
)

G.
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Appendix A. The behaviour of8 at the point of contact

In order to discover more about how the velocity potential behaves near the contact point, we
considerα(q) asq → 0. Equation (16) is rewritten for smallq as

d2α

dq2
− 1

q

dα

dq
− 1

q2
α ≈ −4q

which has solution

α(q) = −2q3 + Aq21/2+1+ Bq1−21/2
, (A1)

whereA andB are constants. To exclude the singularity atq = 0 we putB = 0 and then
consider (15). Near to the contact point, on the planez = ν = 0, we haveµ = 2/r, wherer is
the plane polar coordinate distance from the point of contact. Then the dominant contribution
to

8|ν=0 = µ cosθ
∫ ∞

0
α(q)

J1(µq)

q sinh(q)
dq

comes fromq ∈ [0, j/µ], for some real numberj , asµ → ∞. Making the substitution
q = t/µ, using (A1) for smallq, and usingα(q) = q2e−q for largeq we have

8|ν=0 = µ cosθ

{∫ j

0

(
A
t2

1/2−1

µ21/2 −
2t

µ2

)
J1(t)dt +

∫ ∞
j/µ

q e−qJ1(µq)

sinh(q)
dq

}
. (A2)
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We rewrite the second integral as

I2 =
∫ ∞
j/µ

2qJ1(µq)

∞∑
n=1

e−2nqdq

=
∫ ∞
j

2x

µ2
J1(x)

∞∑
n=1

e−2nx/µdx

≈
∫ ∞
j

2x

µ
J1(x)

∫ ∞
1/µ

e−2yxdy dx asµ→∞

= µ−1
∫ ∞
j

J1(x)e
−2x/µdx.

We next integrateI2 by parts:

I2 = µ−1

[
J0(j)e

−2j/µ − 1

2µ

∫ ∞
j

J0(x)e
−2x/µdx

]
and choosej as thefirst zero ofJ0: J0(j) = 0. Then note that we have∫ ∞

j

J0(x)e
−2x/µdx ≤

∫ ∞
0
J0(x)e

−2x/µdx =
(

1+ 4

µ2

)
≈ 1

for largeµ, using [19, Equation 6.611.1]. ThusI2 is of orderµ−2 at most and (A2) becomes

8|ν=0 = µ cosθ

{
A

µ21/2

∫ 1

0
t2

1/2−1J1(t)dt − 2

µ2

∫ 1

0
tJ1(t)dt +O(µ−2)

}
≈ cosθ

{
A′µ1−21/2 +O(µ−1)

}
= cosθ

{
A′′r21/2−1+O(r)

}
which is immediately comparable with the expression (17) for8c, showing that the fully
three-dimensional solution has the same dependence onr close to the origin.
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